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Abstract: Eddy current (EC) measurements, widely used for diagnostics of conductive materials,
are highly dependent on physical properties and geometry of a sample as well as on a design of an
EC-sensor. For a sensor of a given design, the conductivity and thickness of a sample as well as the
gap between the sample and the sensor (lift-off) are the most influencing parameters. Estimation
of these parameters, based on signals acquired from the sensor, is quite complicated in case when
all three parameters are unknown and may vary. In this paper, we propose a machine learning
based approach for solving this problem. The approach makes it possible to avoid time and resource-
consuming computations and does not require experimental data for training of the prediction
models. The approach was tested using independent sets of measurements from both simulated and
real experimental data.

Keywords: eddy current sensors; multifrequency eddy currents; machine learning;
partial least squares regression; support vector machines; convolutional neural networks; deep learning;
data driven approach

1. Introduction

Non-destructive testing of metals and alloys usually involves estimation of their
physical and mechanical properties, detection of cracks, corrosion and other flaws [1].
Quite often, the investigated material is hidden under a dielectric layer, for example
anticorrosive coating or isolation material on a pipeline. In this case, the use of non-contact
methods, such as eddy current measurements, is required.

Eddy-current testing (ECT) was proven to be an effective tool for the inspection of both
magnetic and non-magnetic conductive materials [2–4]. It is mainly based on the variation
of properties of the secondary magnetic field produced by eddy currents. The eddy currents
are being induced within a conductive sample using an electromagnetic signal of a given
frequency. The properties of the secondary field can be measured, for example, in form of
impedance change of an EC-sensor (coil).

The impedance of the sensor depends on many factors, including conductivity, size
and geometry of the sample, distance between the sensor and the sample, presence of
various flaws, etc. To get more reliable results, the measurements are usually made for a set
of activation frequencies, which gives a vector of the impedance values (EC-signal) [5]. Vari-
ous research was devoted to establishing analytical or semi-analytical models, which make
it possible to compute the impedance values depending on the frequency, parameters of
the sample and the sensor, as well as the experimental conditions [6,7].

However, to use the eddy current testing on practice, a solution of the inverse problem
is required [8]. In the present work we consider the following task—estimate a thickness
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of a sample and size of a dielectric layer on top of the sample, assuming that the exact
conductivity of the sample is unknown but bounded by a relatively wide range. This task
has no analytical solution, and solving the inverse problem is particularly difficult if the
thickness of the sample is smaller than the corresponding skin-layer. So all three unknown
parameters influence the impedance significantly.

One of the possible ways to overcome this problem is to use machine learning meth-
ods, where a mathematical model is trained based on data with a known response (the
parameters of interest) and predictors (the measured EC-signals). After that, this model
can be used for making predictions of the response values for a new set of measurements.
This approach is often called “data-driven” or “soft modeling”, as in this case, the predic-
tion models do not have any meaningful interpretation and, quite often, the prediction
mechanism is hidden (e.g., in case of deep learning neural networks).

Once trained and properly validated, the machine learning models can predict the
response values almost instantly, because the prediction, in most of the cases, requires just
taking a cross-product of two or several matrices. The popularity and applicability of this
approach are growing rapidly, especially in recent years. Thus in [9,10] authors successfully
applied Partial Least Squares (PLS) and Support Vector Machine (SVM) regression for
characterization of groove geometry (height and width) as well as orientation and size
of cracks.

In [11] authors applied PLS regression for prediction of lift-off and conductivity of
thick samples, where real experimental data were used both for training the regression
model and validation of the predicted values. However, in this case models were made
for thick samples, so the thickness was much larger than the corresponding skin-layer and
therefore did not influence the shape of the EC-signals. This is a much simpler case than
the one presented in this paper. To our knowledge, there is no research available where
machine learning methods have been applied to resolve the effects of variation of the three
parameters simultaneously.

The use of experimental data for training the machine learning models has its cons
and pros. Thus if several parameters are unknown, this will require specially designed
data, where the parameters vary at several levels each, which will result in hundreds of
combinations. In case if non-linear methods, such as neural networks or gradient boosting,
are considered, the amount of measurements should be even larger as otherwise, the
models are prone to overfitting. Carrying out thousands of real EC-measurements is a very
laborious and time consuming task.

In this work we propose to train the prediction models based on simulated data, gener-
ated using one of the analytical models, like it was also done in [9,10,12] and other research.
However, the validation of the models is carried out using the designed experimental data
to ensure that the models can be used for real life applications.

Narrowing down, the present work has the following objectives:

1. Assess the feasibility of using machine learning models for prediction of lift-off and
thickness of conductive samples assuming that both are unknown. The conductivity
of the samples is considered as unknown as well, but bounded by a relatively wide
range of possible values.

2. Apply the models to real experimental data obtained independently using full facto-
rial design to avoid confounding of the parameters of interest.

The manuscript describes the research and main results in detail. All calculations were
made in R v. 4.0.3 [13] using packages mdatools [14], keras [15], e1071 [16], rootSolve [17]
and CircularDDM [18].

2. Materials and Methods

To reach the objectives of this work, the following steps were carried out.

1. For a given set of activation frequencies, compute theoretical values reflecting changes
in relative reactance and resistance of an eddy current sensor, located on top of a
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sample with given conductivity, σ, given thickness, d, and at a given distance (lift-off),
h. Two subsets with simulated signals are created—one for calibration and one for
validation of regression models.

2. Calibrate two regression models for the prediction of d and h correspondingly us-
ing the simulated data. Optimize the parameters of the models to ensure optimal
performance on the validation set.

3. Acquire experimental data using a specifically designed eddy current sensor and a set
of samples of different thicknesses at different lift-off values. The samples are made
of two materials with different conductivity.

4. Apply the models to the experimental data for the prediction of d and h values.
Compare the predicted and reference values.

This section describes the choice of methods for simulations and regression as well as
the experimental setup in detail.

2.1. Experimental Setup

A schematic diagram of the eddy current sensor and the experimental setup, used in
this work, is shown in Figure 1. A simple radial coil with ferrite core was used for both
exciting the currents as well as for acquiring the EC-signals. Parameters of the sensor are
shown in Table 1.

Figure 1. Sheme of eddy current (EC)-sensor and experimental set-up.

The measurement system included an AC power source, the sensor and a simple
circuit coupled with the data acquisition unit. A computer’s sound card was used both
for generating the AC signals as well as for reading the changes of voltage and current
from the sensor using two channels of analog input of the sound card. The system itself
and the measurements were controlled by a program created in the LabVIEW environment
(National Instruments, Austin, TX, USA).

A schematic diagram of the measurement system is shown in Figure 2 (adapted
from [11]).The signal from the AC power source, used to activate the sensor, can be written
in complex form as:

U̇1 = U1ejφ1 . (1)

Here U1 and φ1 are the amplitude and the initial phase of the signal correspondingly.
The signal, measured from the sensor can be represented as:

U̇2 = U2ejφ2 , (2)



Sensors 2021, 21, 618 4 of 16

where U2 and φ2 are the amplitude and the initial phase of the measured signal. After that,
we can compute the resistance, X, and the reactance, R, of the sensor as:

X = r
U1

U2
sin(φ1 − φ2) (3)

R = r
[

U1

U2
cos(φ1 − φ2)− 1

]
. (4)

Based on the measurements, an EC-signal can be represented in a form of changes
of relative resistance, (R − R0)/X0, and relative reactance, (X − X0)/X0, of the sensor.
Here R0 and X0 are resistance and reactance of the sensor without a sample, R and X are
the values measured when the sensor was placed on top of the sample with a given lift-off.
The measurements are carried out for a set of activation frequencies, resulting in a vector
of values.

Figure 2. Shematic diagram of the measurement system.

Table 1. Parameters of the EC-sensor.

Coil Core

Inner radius, r1 7.4 mm Radius, rc 5.1 mm
Outer radius, r2 11.8 mm Height, lc 82.3 mm
Height, l 10.5 mm Rel. permeability, µc 200
Number of turns, N, 900

Two materials, duralumin alloy D16t (σ = 15 ± 0.5 MS/m) and aluminum-manganese
alloy AMg5M (σ = 22 ± 1 MS/m) were chosen for the experiments. The materials were
cut into several samples with thickness (d) varied between 1 and 8 mm. The width and the
length of the samples were selected to be larger than 15r1, as required by the theoretical
model, which is described below.

For each sample, the measurements were carried out at different lift-off values (h),
varying from 0 to 2 mm. The lift-off was set by using dielectric films and measured with a
micrometer. For every lift-off value, five measurements were taken at different positions
within each sample and then averaged.

The reactance and resistance of the sensor were measured in a frequency range of
100–10,000 Hz with steps from 10 to 897 Hz (50 frequencies in total). The selection of
the frequencies was based on the method described in [19], so the measured changes
of voltage and current contained all needed harmonics, which reduces acquisition time
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significantly. Thus every EC-signal consisted of 100 values—50 for relative resistance and
50 for relative reactance.

2.2. Analytical Model and Simulation of ECT Signals

After preliminary consideration and comparison, the model proposed by Theodoulidis
and co-authors [6,7] was chosen for simulating the eddy current signals. The model was
shown to be efficient for a wide range of frequencies and the parameters of interests and
can work with multilayer media, which is required for taking into account the thickness of
the samples.

In its general form, the model allows to get an analytical solution for impedance
of an axisymmetric eddy current ferrite-cored probe above a multi-layered conduct-
ing half-space. The solution is based on the truncated region eigenfunction expansion
(TREE) method, which gives a possibility to replace integration by matrix operations [20].
Thus the impedance of a symmetric ferrite-cored probe over a multilayer conductor can be
computed as:

Z = jωπµ0ν2hTMh. (5)

Here ν is a coil turns density, ω is angular activation frequency and µ0 is a vacuum
permeability conctant.

The vector h is a column vector, whose values are computed using roots of specifically
defined eigenfunctions and properties of the sensor (inner and outer radius of the coil,
radius and magnetic permeability of the core).

The matrix M is obtained as a result of a cross product of several matrices, responsible
for different effects. One of them is the reflection matrix, which in its turn, depends on the
geometry and conductivity of the sample.

More details about the model and corresponding calculations can be found in [7].
The same expression can be used to compute the self impedance of the sensor, Z0, by re-
moving the effects of the conductor from the matrix M. The reactance, X and the resistance,
R, can be then computed by taking the imaginary and the real parts of the impedance.

Since both h and M depend on roots of the eigenfunctions, their dimension, as well as
the precision of results, depend on the number of the roots. In this work we use n = 100
roots to achieve a proper convergence in the calculations, as proposed in [7]. This means
that h and M have dimension of 100 × 1 and 100 × 100 correspondingly.

The implementation of the theoretical model was made in R. Function besselzero from
the package CircularDDM was employed for finding first k positive zeros of the Bessel
functions using Halley’s method. Package rootSolve [17] provided function uniroot.all,
which was used to find roots for more complex functions within a given interval. The rest
of the code was manually written based on linear algebra operators and functions BesselJ,
besselY, integrate from the R distribution.

The theoretical model was used to generate signals for relative resistance and reactance
for the defined set of activation frequencies based on characteristics of the sensor described
in the previous subsection. Two sets of signals—one for training and one for validation—
were created using combinations of the three parameters (thickness and conductivity of
samples and the lift-off). A sequence of values (levels) was defined for each parameter as it
is shown in Table 2. The values for the validation set spanned a bit smaller range and were
shifted related to the values of the training set to improve the validation quality.

A full factorial design was used to create all possible combinations of the parameters
resulted in 6615 signals for the training set and 5600 signals for the validation set. Al-
though these numbers look overwhelming, there are several reasons justifying this choice:

1. The model to be created should work on a wide range of parameters. So a single model
can be applied to experimental data obtained for samples with different conductivity,
size and for different lift-off values, as we assume none of these characteristics is
known a priory.

2. The use of full factorial design, in this case, is necessary to avoid confoundings—
hidden cross-correlations among the three parameters. This in its turn is demand-
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ing for resolving the effects of conductivity, thickness and lift-off on the shape of
the EC-signals.

3. A large number of measurements makes it possible to employ non-linear methods,
which tend to overfitting otherwise.

4. The simulation is an inexpensive operation and requires (in this case) several hours
of computational time. Once data is simulated it can be re-used for creating models
based on different machine learning methods, optimization of the model parameters,
etc. Acquiring experimental data of this size would require a much longer time and a
lot of resources.

Table 2. Parameters for simulation of the eddy-current testing (ECT) signals.

Conductivity (MS) Liftoff (mm) Thickness (mm)

Cal Val Cal Val Cal Val

Min 15 15.25 0 0.05 1 1.25
Max 25 24.75 2 1.95 8 7.75
Step 0.5 0.5 0.1 0.1 0.5 0.5
Number of values 21 20 21 20 15 14

2.3. Regression Models

It was decided to employ three regression methods in this work.
Partial Least Squares regression (PLSR) is the simplest method, resulting in multiple

linear regression model [21]. The main idea of PLS regression is to find a set of latent vari-
ables (PLS-components) oriented along specific directions in X- and Y-variable space [22].
If one projects the data points to these directions, the covariance between the coordinates
of the projections in the X-space (X-scores) and coordinates of the projections in the Y-space
(Y-scores) will be the largest possible.

Since the number of PLS-components is usually relatively small and the compo-
nents are orthogonal to each other, this approach allows us to tackle two problems
simultaneously—too many predictors (so-called curse of dimensionality) and the collinear-
ity in predictors. This made PLS-regression de facto standard for solving regression
problems using e.g., spectroscopic measurements. It was also used earlier for analysis of
eddy current signals [10,11].

PLSR has several advantages over the other regression methods. First of all, it is
fast, simple in implementation, and has only one parameter to optimize—number of PLS-
components. The optimal number of components can be selected by using cross-validation
or an independent validation set. Second, it provides a lot of exploratory tools, for example,
to identify extreme samples or outliers, which do not share the same trend. PLS-regression
also has tools (VIP scores, selectivity ratio and several others) for selection of the most
important predictors [23].

It must be noted, however, that PLS regression implies a linear relationship between
the predictors and the response variable. Therefore we can expect that it will perform
poorly in the case of prediction of the sample thickness, which has a non-linear effect on
the shape of the EC-signals. In order to tackle this issue, a use of non-linear methods must
be also considered.

Support Vector Machines (SVM) is another popular supervised learning method that
can be used for solving both regression and classification problems [24]. It was originally
proposed as a method for discrimination of samples, which finds a hyperplane, separating
points from two classes best possible, so the gap (or margin) between the classes, along the
hyperplane, is maximized. In SVM, the orientation of the separation hyperplane is defined
only by a subset of training measurements—support vectors, hence the name.

In the case of regression, the hyperplane is used as a regression model mapping the
data points from X-space to y. There are two main approaches for the implementation
of SVM regression, namely, ε-regression and ν-regression. The ν-regression, which is
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used in this work, has only one parameter to tune, ν, which is the proportion of the
number of the support vectors to the total number of measurements in the training set.
This parameter can be considered as an analog of the model complexity, so large ν may
lead to an overfitted model.

Support Vector Machines is a linear method, however, a non-linear solution can be
found by using a kernel trick, which maps the data points from the original variable space
to a higher dimensional feature space using a kernel function [25]. Radial basis function
(RBF) is one of the most used kernels for solving non-linear regression problems was
employed in this work.

The third selected method is Convolutional Neural Network (CNN) regression [26].
It is a rather new method, based on the deep learning architecture [27]. CNN can be
considered as an artificial neural network with several layers, where the first layer creates
a convolution kernel that is convolved with the inputs over a single spatial dimension
(in our case—frequencies).

One of the important reasons for the selection of the CNN regression method in this
work was the ability to pre-train a CNN model. Pre-training is an initial step, where the
CNN model parameters are optimized using a dataset, similar to the one the model is
going to be used for, but more accessible. After that, the model can be fine-tuned using
real data. The trick is that there is no need for a large number of real measurements for the
fine-tuning step. This perfectly fits the purpose of the work—train a model using simulated
data and then use it for predictions based on EC-signals measured experimentally.

The number and types of layers as well as their size and activation function give
almost infinite possibilities for tuning. On the other hand, having too many layers leads to
a huge number of parameters in the CNN model and, as a consequence, increases the risk
of overfitting.

In order to make this risk smaller, we decided to use one of the predefined architectures
and did not change either the number of layers nor their properties. This perhaps does
not allow us to get the best solution possible, however in this case we did not have any
parameters to optimize except the computation of gradient, which is done based on the
provided validation set.

Thus, all three methods have only one parameter to optimize—number of compo-
nents for PLS regression, number of support vectors for SVM regression and the way of
computing gradient in CNN.

The quality of the models was evaluated graphically, using predicted vs. measured
values plot, as well as statistically, by computing root mean squared error, RMSE:

RMSE =

√
∑n

i=1(yi − ypi)2

n
. (6)

Here yi and ypi are the reference (measured) and the predicted values for a given
response variable (e.g., thickness or lift-off) corresponding to the i-th measurement.

It must be noted that the whole procedure, including optimization of the regression
algorithm parameters for all three methods, took less than 5 min when running on a
computer with 2.3 GHz 8-Core Intel Core i9 and 32 GB 2667 MHz DDR4 RAM under
MacOS 11.0.1. The prediction is instantly fast (about 1 s for 5000+ EC-signals on the
same computer).

3. Results

First of all, a qualitative assessment is carried out in order to see how well the
theoretical model fits the experimental data. In order to do that, for each material,
four measurements corresponding to the boundary values of lift-off and thickness were
taken and theoretical EC- signals were computed using the analytical model described in
Section 2.2. Figure 3 shows the experimental data (as points) and the computed theoretical
signals (as curves) for each material.
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Figure 3. Relative resistance (left) and reactance (right) for the two alloys and selected combination
of thickness and lift-off. Points show experimental data, measured using the EC-sensor. Curves show
theoretical signals computed using model described in Section 2.2.

Apparently, there is a quite good agreement between the experiment and the theory.
However, one can observe a small but rather systematic deviation between the experimental
points and the theoretical curves. This deviation can be explained both by uncertainty
in the estimation of EC-sensor parameters (e.g., permeability of the core) as well as by
imperfection of the theoretical model in general.

After exploratory analysis, three regression models were created for each parameter
of interest (the sample thickness and the lift-off) using the methods described in the
previous section. A simulated validation set was used for the optimization of the model
parameters at this stage. The optimized models were applied then for the prediction of the
experimental data.

R package mdatools [14] was used for PLS modeling. Package keras [15] provided
R interface to Keras—a high-level neural networks application progamming interface
supplemented with the Keras library. The support vector machine regression was utilized
using implementation from the package e1071 [16].

Figure 4 shows results in form of predicted vs. measured plots with corresponding
RMSE values. The left plots demonstrate results for the prediction of lift-off while the
right plots show results for the prediction of the thickness of the samples. Gray points
correspond to the simulated validation set, on which the models were optimized. The blue
and the red points correspond to the predictions made for the experimental data obtained
for samples with conductivity σ = 15 MS/m (shown as blue) and σ = 22 MS/m (shown as
red). Such representation allows us to see if the conductivity has any effect on the quality
of predictions.
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Figure 4. Predicted vs. measured plots for lift-off (left) and sample thickness (right) obtained using
the three regression methods (a,d—PLS; b,e—SVM; c,f—CNN), optimized by the simulated validation
set. Gray points show the results for the validation set, red and blue points show the predictions of
the experimental data.

The figure clearly shows that Partial Least Squares regression, in this case, did not
perform well either for the lift-off predictions nor for the prediction of the thickness of the
samples from the experimental data. However, it can be also noticed that for the lift-off,
the prediction error is mostly due to a bias, while the random error is relatively small.



Sensors 2021, 21, 618 10 of 16

At the same time, the predicted values for the simulated validation set (gray points) are
very close to the reference values.

The SVM regression performs much better, however, the predicted vs. measured plot
also clearly shows the bias problem for predictions made on the experimental data—all pre-
dicted values tend to be by approximately 0.2 mm larger compared to the reference values.

The results obtained using CNN regression are the best in this case, although a small
bias is also clearly visible. In case of lift-off one can also notice a small shift of the blue
points (samples with smaller conductivity) related to the red points, which is reflected in
the corresponding RMSE values (0.12 mm for samples with σ = 15 MS/m vs 0.06 mm for
samples with σ = 0.22 MS/m).

The prediction performance of the sample thickness is unacceptable in the case of PLS
regression, demonstrating both bias and variance problems. The SVM regression model
demonstrates decent predictions with a small systematic deviation—the thickness of the
largest samples (around 8 mm) is clearly underpredicted, while the small samples (around
1–2 mm) have better prediction accuracy.

The regression model based on convolutional neural networks also demonstrates the
best results in this case, although with a tiny bias. Overall, taking into account that the
models were trained on the simulated data, CNN results demonstrating for prediction of
experimental data it knows nothing about, can be considered as superior.

A deeper investigation of the models has shown that the main reason for the bias,
especially in the case of PLS regression, is a small discrepancy between the theoretical and
experimental results demonstrated earlier. Since the theoretical values, both for calibration
and validation sets, do not have any noise or other disturbances, models being optimized
based on the validation set trying to predict the theoretical values as good as possible (it can
be seen by observing the predictions for the gray points) thus underlying the difference
from the experimental data. In other words, using simulated data for optimization leads to
overfitted models, especially in the case of PLS and SVM.

This issue can be tackled by employing the experimental data for the optimization of
the model’s parameters. The models are still trained on the simulated data, but estimation
of the optimal parameters (number of components, number of supporting vectors) as well
as fine-tuning of the CNN regression models are made based on the experimental data.
To check this assumption a new round of training/optimization steps has been carried out,
the results are presented in Figure 5.

In case of prediction of the lift-off this was a game-changer for PLS regression
model—it demonstrates the best prediction performance although with a tiny non-linear
effect, which was also discussed in [11]. There is also a small shift of the blue and the
red points observed earlier for the CNN model. The prediction bias disappeared but the
variance became larger. This can also be observed for the gray points, the error of prediction
for the simulated validation set and the experimental data are almost equal.
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Figure 5. Predicted vs. measured plots for lift-off (left) and sample thickness (right)
similar to what is shown in Figure 4 but for models optimized using the experimental data
(a,d—PLS; b,e—SVM; c,f—CNN).

The improvement is a result of changing the number of components in the PLS model
from 10 (which was found to be optimal in the previous case) to 4. Two top plots in Figure 6
demonstrate how the root mean squared error values depend on the number of components
in the PLS models both for prediction of measurements from the simulated validation set
(shown as blue points) and the experimental measurements (shown as red points). In case
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of lift-off, there is a clear discrepancy between the two series starting from A = 4. Thus we
can conclude that PLS regression strongly requires experimental data for optimization.

Figure 6. Root mean squared error (RMSE) vs. number of components plots for the Partial
Least Squares (PLS) regression models ((a) — for prediction of lift-off, (b) — for prediction
of thickness) and RMSE vs ν-values for the Support Vector Machine (SVM) regression
models ((c) — for prediction of lift-off, (d) — for prediction of thickness). The blue points
show developing of RMSE for the simulated validation set, the red points show RMSE
values for the experimental data.

The SVM results also demonstrate a much smaller bias, however, in this case there is
a clear sign of a small non-linearity on the predicted vs. measured plot. This is due to a
much smaller number of support vectors used in the new model (0.2% of the total number
of measurements in the calibration set vs. 2% found to be optimal in the previous case).

Two bottom plots in Figure 6 show how RMSE values depend on the selection of the
ν parameter, similar to what is shown for the number of components in PLS-regression.
Again, there is a clear minimum in both cases, when experimental data is used for opti-
mization, while the simulated validation set did not allow to get the optimal value for the
number of support vectors. Using the values obtained based on the experimental data
improved the overall prediction performance for the SVM regression model (RMSEfor
lift-off changes from 0.24/0.18 to 0.19/0.10).
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The RMSE plots in the Figure 6 demonstrate a well-known problem of trade-off
between underfitted and overfitted models. If a regression model is too simple (does
not have a proper complexity), this leads to an underfitted model, so the fitting error is
large. If model is too complex, this leads to an overfitted model, where the fitting error is
very small, but model starts modeling noise in the calibration data and this gives a large
sampling error when the model is being applied to a new set of measurements.

The overfitting can be captured only if a proper validation method is used. The best
is to use a test set validation—based on new measurements with its own sampling error.
However, simulated data in our case does not have proper sampling error, which, from our
point of view, was the main reason why it did not provide a correct estimation of the
model’s complexity. However, if the experimental data is employed for the validation,
the overfitted models are spotted clearly, as shown on the plots,—in this case, the sampling
error gets too large, which results in larger prediction error.

It is interesting, that the results for CNN remain almost unchanged in this case despite
the fine-tuning. It must be also noted, that the results for the CNN regression may vary
from run to run, because the model is trained using stochastic gradient descent. However,
the variation is quite small.

The predictions of the thickness have also been improved significantly, however,
PLS regression model can not tackle the non-linearity effect and failed to provide de-
cent performance in this case. Support vector machines regression demonstrates a small
improvement—RMSE values are decreased from 0.90/0.72 to 0.64/0.67. The model based
on convolutional neural networks shows the best results with RMSE = 0.40/0.25, which is
again almost identical to the results obtained without the use of the experimental data
for optimization.

Tables 3–5 combine all information about the regression models, including tuned and
fixed parameters as well as the prediction performance statistics.

Table 3. Parameters of Partial Least Squares regression (PLSR) models and corresponding RMSE
values (Val model optimized using simulated validation set, Exp model optimized using the experi-
mental data).

Parameter Lift-off Thickness
Val Exp Val Exp

Number of components 10 4 10 3
RMSE (Val) 0.02 0.05 0.37 0.71
RMSE (Exp, 15) 1.19 0.12 20.5 1.11
RMSE (Exp, 22) 1.18 0.06 20.3 0.60

Algorithm SIMPLS
Preprocessing mean centering

Table 4. Parameters of SVM models and corresponding RMSE values (Val model optimized using
simulated validation set, Exp model optimized using the experimental data).

Parameter Lift-off Thickness
Val Exp Val Exp

Number of SVs, % 2 0.2 2 0.35
RMSE (Val) 0.01 0.07 0.09 0.46
RMSE (Exp, 15) 0.24 0.19 0.90 0.64
RMSE (Exp, 22) 0.18 0.10 0.72 0.67

Type ν-regression
Kernel Radial basis function
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Table 5. Parameters of Convolutional Neural Network (CNN) regression models and corresponding
RMSE values (Val model optimized using simulated validation set, Exp model optimized using the
experimental data).

Parameter Lift-off Thickness
Val Exp Val Exp

RMSE (Val) 0.02 0.02 0.11 0.11
RMSE (Exp, 15) 0.12 0.15 0.38 0.40
RMSE (Exp, 22) 0.06 0.08 0.29 0.24

Layer 1 1D convolution, kernel size = 2, 100 × 50, ReLU
Layer 2 Flatten
Layer 3 Dense, 50 × 50, ReLU
Layer 4 Dense, 50 × 1, Linear
Batch size 256
Loss function mse
Epochs 100
Optimization Adam

In terms of relative errors, CNN has average relative error of 9% for prediction
of thickness (min-max range 0.1–34%) and 19% for prediction of lift-off (range 2–65%).
Average relative error for PLS is 18% (0.1–57%) for thickness and 14% (0.1–0.63%) for lift-off.

Most of ECT devices currently available on the market aim at detecting different flaws
in materials rather than predicting their thickness and thickness of the dielectric coating.
In case of just estimation of the coating thickness usually such methods as X-ray [28] or
ultrasonic [29] are widely employed, however, devices utilizing the ECT as a main or
supplementary method also exist, see for example [30] or [31]. The measurement error for
the coating thickness provided by the producers varies between 1% and 3%.

4. Conclusions

The study shows great potential for use of a data-driven approach based on machine
learning models to predict characteristics of conductive samples (thickness of the samples
and thickness of a dielectric layer on top of them) based on multi-frequency ECT measure-
ments in the case when all parameters of interest, as well as the conductivity of the samples,
may vary and are not a priori known. The obtained results provide more evidence for a
real benefit brought by using soft mathematical models for solving some applied physical
problems when the exact analytical solution is not possible.

The presence of well established theoretical models for solving direct problems,
like the one used in this paper, makes it possible to overcome one of the main draw-
backs of the machine learning methods—collecting a arge amount of experimental data for
model training. As it was also shown here, training a regression model on properly simu-
lated data makes it possible to use it for the real experimental data with just a small drop in
prediction quality. This also allows researchers to employ deep learning methods, such as
convolutional neural networks, which require a large number of training measurements.

PLS regression is proven to be a good choice for the prediction of the lift-off (distance
between a sample and an EC-sensor), which is easier to resolve from the other effects and
which has an almost linear dependence on the shape of the measured EC-signals. However,
it is necessary to use experimental data for optimization of the PLSR model, in particular,
for selection of optimal number of components.

The use of more sophisticated methods, such as SVM regression and convolutional
neural networks, makes it possible to solve non-linear problems, like the prediction of the
sample thickness. One of the advantages of CNN regression, as shown in this work, is that
when the CNN model is being trained and optimized using simulated data it performs
very well even without the fine-tuning step. So strictly speaking, no experimental data
are required.
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In our opinion, the demonstrated results show the data drive approach a very good
supplement to the state-of-art methods currently used in eddy current testing.
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