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Abstract. The article describes the problems of mathematical modeling of pro-

cesses using an experimental database and a knowledge base. This research re-

lates to multidimensional dependency building. It uses regression analysis and 

machine learning techniques within the framework of probability theory and 

mathematical statistics. A large observation table often cannot be processed on 

a single computer. The analysis of such data requires parallel computations and 

in this article it is carried out by the method of interval mathematics, which al-

lows performing such computations. The analysis of linear dependences on pa-

rameters is reduced to solving systems of interval linear algebraic equations. 

Among the approaches to systems study known in the literature, an approach 

was chosen that takes into account the so-called “single set of solutions”. This 

method provides a guaranteed estimate of the required dependencies and allows 

the use of linear programming in some cases. Using this method, interval fore-

casts of the output variable of the modeled process are calculated. Interval esti-

mates of the parameters of the studied dependence were also obtained. Two 

methods of sequential and parallel analysis of a large database are proposed, us-

ing methods for solving large-scale linear programming problems. The optimal-

ity of the algorithms is substantiated using the well-known technique of remov-

ing constraints in optimization problems of large dimension.The research was 

carried out on model processes and on real data of statistics of road traffic acci-

dents in England. 

Keywords: Big Data, Applied Interval Analysis, Linear Programming, Guaran-

teed Estimation of Parameters of Linear Dependencies. 

1 Introduction 

In recent years, Big Data Analysis Methods have been significantly developed in 

connection with new opportunities for collecting, storing, transmitting situational 

information and the use of artificial intelligence technology to support decision-

making based on them [1]. In practice, the analysis of large data tables requires the 

use of parallelization schemes in computational algorithms. The use of special high-

performance computing systems and cloud technologies for solving complex prob-

lems is becoming effective. 



2 

Big data is characterized by a large number of observations and the lack of the 

necessary structure for representing factors and output variables. Therefore, the analy-

sis of these data sets is carried out in two stages. The first stage is associated with 

solving various problems of structuring the information flow of data: identifying es-

sential factors; digital coding of qualitative assessments of factors; transformation of 

descriptive characteristics of factors in natural language; data coding in order to ob-

tain a digital table of input and output variables of the modeled process. 

At the second stage, a study of causal relationships, assessing the adequacy and 

performance of the obtained empirical model is carried out. Among the methods of 

the second stage, both classical probability-theoretic methods [2, 3, 4, 5, 6] and rela-

tively new ones, in particular, applied interval analysis [7, 8, 9] are used. 

Currently, regression analysis based on the least squares method is traditionally 

used for big data analysis. Methodological approaches to this analysis are presented in 

[2, 3]. In [4, 5], the use of high-performance computing systems for solving problems 

of regression analysis of big data is considered. 

The initial idea and the first applications of the interval approach to data analysis 

are presented in [7] to estimate the parameters of the linear dependence of the output 

variable, measured with interval error, on n input variables accurately measured in 

each of the N tests. The processing of the experimental data table of the model was 

carried out by solving special linear programming (LP) problems. 

The development of this approach in science and practice has been associated in 

recent decades with the use of interval approximation of experimental data [8, 9, 10, 

11]. New methods of interval mathematics had a significant impact on the formation 

of interval data analysis [12, 13]. Interval data analysis in a number of applications is 

more efficient in comparison with known methods and has significant development 

potential, including for solving big data processing problems 

In the general case, the problem of constructing linear dependences with respect to 

parameters with interval measurement errors of all variables is reduced to solving 

interval systems of linear algebraic equations. Among the set of solutions for interval 

systems of linear algebraic equations known in the literature [12, 13], one set of solu-

tions is selected that provides a guaranteed estimate of the desired dependencies. For 

the purposes of this work, it is useful to be able to solve mathematical problems by 

methods of mathematical programming. These methods can also be used to solve 

high-dimensionality optimization problems [14, 15]. 

The research is carried out in the following order: 

─ the theoretical foundations of applied interval analysis in the modeling of linear 

processes are considered; 

─ methods of sequential analysis of a large database of experimental data in one 

computer and parallel data analysis in high-performance computing systems are 

proposed; 

─ computer modeling of algorithms for big data analysis is carried out; 

─ the last section analyzes the real data of road traffic accidents statistics in England 

for the period of 2005 – 2017. 

Using the considered approach in the analysis of big data, interval estimates of the 
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output variable of the modeled process are obtained for given values of the input 

variables and interval estimates of the parameters of the studied dependence. Two 

algorithms are proposed for the implementation of the method using sequential 

reading of database rows and parallel computer calculations. 

The optimality of the calculations is substantiated using the method of relaxation of 

constraints when solving optimization problems of large dimensions [14, 15]. 

Computer modeling of the proposed algorithms for analyzing big data has been 

carried out in order to study the possibility of their use in practice and to assess the 

errors of their limited implementations. The study was carried out on model processes 

under the conditions of the feasibility of the assumptions of interval data analysis and 

on real data, the source and description of which are presented in [16, 17]. 

2 Methods and Data 

2.1 Optimization Methods in Interval Data Analysis 

Mathematical models of processes are represented as a scalar function, the input and 

output variables of which are generally measured for each of N observations with 

interval errors. It is assumed that the systematic components of errors in measuring 

variables are equal to zero. This general case of analyzing such a database with all 

observation errors will be discussed later. 

Further, we assume that the variables x = (x1, … , xn) are measured exactly 

(without measurement errors), and the measured value of the output variable is the 

interval: 

 𝑌𝑗 = [𝑦𝑗
𝐻 ,   𝑦𝑗

𝑉];  𝑦𝑗
𝐻 = 𝑦𝑗

𝑀 − 𝜀𝑗
0;   𝑦𝑗

𝑉 = 𝑦𝑗
𝑀 + 𝜀𝑗

0;  𝑗 = 1, … , 𝑁. (1) 

Here yj
M  is the measurement of the output variable in the j-th observation; εj

0 – 

estimate of the maximum value of the modulus of the interval measurement error. 

Then the unknown values of the true coefficients of the linear model: 

 𝑦 = 𝑎1𝑥1+ ⋯ + 𝑎𝑛𝑥𝑛 (2) 

satisfy the system of N two-sided inequalities: 

 𝑦𝑗
𝐻 ≤ 𝑎1𝑥1𝑗+ ⋯ + 𝑎𝑛𝑥𝑛𝑗 ≤ 𝑦𝑗

𝑉;   𝑗 = 1, … , 𝑁. (3) 

Let M denote the set of values of the vector a = (a1, … , an), which satisfy the 

system of inequalities (3). In the literature, this set is called the "set of uncertainty" or 

"information set" [12, 13]. 

The goals and results of data analysis are considered complete when the set M is 

not empty, bounded and allows obtaining process estimates with a given accuracy. 

In the case of an empty set M, the information of the knowledge bases and 

databases is inconsistent and requires their correction. The case when the set Mis not 

bounded indicates that there is insufficient information for analysis and it is required 

to expand the composition of databases or knowledge. 
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Let us consider the main applied problems that are solved when modeling 

processes. 

1. The problem of forecasting the output variable at a given point of the factor space 

𝑥𝑃 = (𝑥1
𝑃 , … , 𝑥𝑛

𝑃). The interval estimate [𝑦𝐻(𝑥𝑃), 𝑦𝑉(𝑥𝑃)] is obtained by solving 

two LP problems: 

 𝑦𝐻(𝑥𝑃) = min𝑎∈М(𝑎1𝑥1
𝑃+ ⋯ + 𝑎𝑛𝑥𝑛

𝑃); 𝑦𝑉(𝑥𝑃) = m𝑎𝑥𝑎∈М(𝑎1𝑥1
𝑃+ ⋯ + 𝑎𝑛𝑥𝑛

𝑃). (4) 

2. Interval estimation of the parameters of the sought dependence. In applied interval 

analysis, the set of true values of the vector 𝑎is specified by the information set, 

but for its visualization in practice, the hyper-rectangle approximation is tradition-

ally used. This representation can be considered as independent interval estimates 

of the components of the vector 𝑎. To calculate them, it is enough to solve 2n line-

ar programming problems. For example, the guaranteed estimate of the coefficient 

𝑎1 belongs to the interval [𝑎1
𝐻 , 𝑎1

𝑉]: 

 𝑎1
𝐻 = 𝑚𝑖𝑛𝑎∈М 𝑎1 ;            𝑎1

𝑉 = 𝑚𝑎𝑥𝑎∈М 𝑎1. (5) 

3.  The projection of the point 𝑎𝑃 onto the set M. The point 𝑎𝑃 belongs to the set M if 

and only if δ is equal to zero, where δ is the solution to the following quadratic 

programming problem: 

 𝛿 = 𝑚𝑖𝑛𝑎∈М‖𝑎𝑃 − 𝑎‖. (6) 

In practice, problem 3 is solved to study the properties of the information set and to 

test the feasibility of the initial assumptions of applied interval data analysis, in-

cluding for assessing the significance of the selected input variables. 

4. Point estimation of parameters of linear models (method of the center of uncertain-

ty). In some cases, it is required to check the feasibility of the initial assumptions 

(for example, in the case when M is an empty set) or to obtain point estimates of 

the model parameters. One of the ways to solve this problem is associated with the 

"expansion" or with the "contraction" of the set M. Let us set the information set M 

(k) by the following system of inequalities: 

 𝑦𝑗
И − 𝑘𝜀𝑗

0 ≤ 𝑎1𝑥1𝑗+ ⋯ + 𝑎𝑛𝑥𝑛𝑗 ≤ 𝑦𝑗
И + 𝑘𝜀𝑗

0;     𝑗 = 1, … , 𝑁;    𝑘 > 0.    (7) 

The system of inequalities (7) coincides with (3) for k = 1. This parameter is called 

the coefficient of expansion (k> 1) or contraction (k <1). The next minimum prob-

lem is called the problem of finding the center of uncertainty: 

 𝑘∗ = 𝑚𝑖𝑛𝑎∈М(𝑘) 𝑘 . (8) 

As the practice of solving problem (8) on real and model data shows, the minimum 

is reached at a single point, which can be considered as a point estimate of the pa-

rameters of the modeled process. The𝑘∗ value is an indicator of the fulfillment of 

the initial assumptions of interval data analysis. Thus, the indices of active observa-

tions for 𝑘∗ > 1 allocate a portion of the database observations, among which gross 
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errors in data recording or underestimated errors in measuring variables are possi-

ble. Such information can be used to adjust the database and knowledge base. 

5. The task of eliminating insignificant factors of the modeled process. One of the 

ways to solve this problem in applied interval analysis is based on the use of inter-

val estimation of the model coefficients according to (5). If the zero value of the 

investigated parameter belongs to the found interval, then the corresponding input 

variable can be considered insignificant and the factor space can be reduced. In 

practice, there are other methods for solving this problem using, for example, the 

results of the analysis of complete and reduced databases. 

It should be noted that the considered mathematical formulations of data analysis 

problems do not change in the general case of the presence of measurement errors for 

all variables. The changes concern systems of inequalities (3) and (7), which define an 

information set as a set of solutions to interval systems of linear algebraic equations. 

We will consider these differences below in computer modeling of algorithms for 

analyzing big data. 

2.2 Algorithms for Interval Analysis of Big Data 

It is required that the computational process provides an optimal solution to one of the 

LP problems given above. 

Let us introduce the following notation: 

 𝐽 = {1, … , 𝑁} – indexes of records of the complete database; 

 𝐽𝑙 – partition of the set J – indices of the 𝑙-th piece of data; 𝑙 = 1, … , 𝑚; 𝑚  is the 

number of chunks allocated when splitting big data; 

 𝐼𝑙  – a set of observation indices that are active when analyzing the 𝑙-th chunk of 

data; 

 𝑀𝑙 – information set when analyzing the 𝑙-th piece of data; 

 𝐼0 – indices of observations that are heuristically allocated at the initial stage of 

calculations from the totality of all observations and provide non-emptiness and 

boundedness of the corresponding information set. 

If it is not possible to single out such observations from the entire database, then 

the set of data is incomplete or inconsistent and, therefore, needs to be corrected. In 

particular, such a situation can arise for n>N or for an insufficient number of different 

points of the factor space. Further, we assume that such a situation does not arise 

when analyzing the data and the set I0 selects n linearly independent constraints of the 

LP problem being solved (|I0| = n). 

Let us write the algorithm for sequential processing of a large base in the following 

form. 

1. Step 0. Let us define a partition of the set J into subsets 𝐽1, … , 𝐽𝑚, select the data 

analysis problem and the objective function of the corresponding LP problem. We 

put µ = 0. 

2. Step 1. We form the set 𝐼0 and set l = 1. 
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3. Step 2. Let us solve the analysis problem for observations with indices 𝐽𝑙 ∪ 𝐼𝑙−1, 

which define the set 𝑀𝑙. If this set is empty, then the calculations are stopped with 

the issuance of the corresponding message. 

4. Step 3. Selecting the indices of active constraints in the LP problem solved at step 

2. If 𝐼𝑙 ≠ 𝐼𝑙−1, then we set µ = 1. Further, we put l = l + 1. If𝑙 ≤ 𝑚 go to step 2. 

5. Step 4. If µ = 1, we put 𝐼0 = 𝐼𝑘;   𝑙 = 1, go to step 2. Otherwise, we analyze the re-

sults of solving the LP problem and the information set of the database, which co-

incides with the set 𝑀𝑚. 

The possibilities of implementing this computational algorithm are determined by 

the acceptable dimension of the LP problem for the selected computer in step 2. 

Let us consider an algorithm for parallel processing of big data, which is a variant 

of hierarchical algorithms for solving large-scale problems, similar to the algorithms 

in [18]. The task of the Center is to form the set I0 and its sequential refinement until 

the condition of optimality of the solution of the selected LP problem is satisfied for 

the entire large database. We will present the algorithm according to a similar scheme 

given above. 

1. Step 0 - Task of the Center. We define the partition of the set J into subsets 

𝐽1, … , 𝐽𝑚, select the data analysis problem and the objective function of the corre-

sponding LP problem. 

2. Step 1 - Task of the Center. We form the set 𝐼0 and transfer the corresponding rows 

of the observation matrix to the data exchange buffer. 

3. Step 2 - Task of the Computers. We solve in each computer l the analysis problem 

for observations with indices 𝐽𝑙 ∪ 𝐼0, which determine the set 𝑀𝑙;  𝑙 = 1, … , 𝑚. If 

there is a computer for which this set is empty, then the calculations are stopped 

with the issuance of the corresponding message. Next, we select the index sets 𝐼𝑙  of 

active constraints, and transfer the corresponding rows of the observation matrix to 

the data exchange buffer. 

4. Step 3 - Task of the Center. We compare the index sets 𝐼0 and 𝐼𝑙;  𝑙 = 1, … , 𝑚. If 

there is a computer l for which 𝐼𝑙 ≠ 𝐼0, then using all active observations we form a 

new set 𝐼0 and go with it to step 1. Otherwise, we analyze the results of processing 

the entire database, the composition of which is represented by the set 𝐼0. 

Specific implementations of the described computational algorithm are determined 

by the nature of the big data and the software of the used computing system. It should 

be noted that at step 3 of the algorithm, the Center can refine the composition of 

active constraints by solving the LP problem with constraints that correspond to the 

index sets I0 and Il;  l = 1, … , m. In the case when the LP problem turns out to be a 

problem of large dimension, the Center can use the first algorithm for sequential data 

processing. 

In addition, it should be emphasized that in the considered algorithms there are no 

requirements for the number of observations when partitioning a large database into 

chunks.  
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3 Results and Discussion 

3.1 Computer Modeling of Interval Analysis of Big Data 

This section discusses the implementation of distributed computing, taking into 

account the limited capabilities of the selected software and hardware tools. Computer 

modeling of big data analysis processes is carried out in the Excel environment using 

the "Search for a solution" tool. The maximum size of the database for the number of 

model variables is determined by the capabilities of this tool. 

We take into account (in our case of computer modeling) that in order to check the 

optimality of the calculations, it is necessary to find a solution to the LP problem for 

the entire database, and its dimension in the number of variables should not be more 

than 200, and in the number of main constraints – more than 100. 

Let us consider the mathematical problems of computational experiments for 

interval data analysis in the general case of the presence of observation errors for all 

variables. These tasks relate to obtaining estimates of the information set. This section 

uses the notation accepted in the literature on the theory of interval systems of linear 

algebraic observations and the traditional notation of linear algebra and LP. 

Interval systems of linear algebraic observations in matrix form are written by an 

interval (N × n) matrix of coefficients and an interval (N × 1) vector of the right-hand 

side in the following form: 

 𝑨𝑥 = 𝑩 . (9) 

Elements of matrices A and B are interval estimates of the measurement results of 

input and output variables in N observations and are conventionally represented by 

inequalities: AH  ≤ A ≤ AV;   BH  ≤ B ≤ BV. 

The values of the vector x ∈ Rn in (9) correspond to the estimates of the 

parameters of the linear dependence, and the combined set of solutions Ξuni 

corresponds to the set of uncertainty described above. In work [13], it is argued that 

"computing for the combined set of solutions of external coordinate-wise estimates 

with any given absolute or relative accuracy is an NP-hard problem". 

In the particular case of positive components of the solution to interval systems of 

linear algebraic observations, a single set of solutions is given by a system of linear 

inequalities, which we write in the following form: 

 Ξ𝑢𝑛𝑖 =  {𝑥 ∈ 𝑅+
𝑛: 𝐴𝑉𝑥 ≥ 𝐵𝐻 ;  𝐴𝐻𝑥 ≤ 𝐵𝑉}. (10) 

Let us write down LP problems for the interval estimation of the value of the 

output variable b at a given point ap ∈ Rn of the factor space: 

 𝑏𝐻(𝑎𝑝) = 𝑚𝑖𝑛𝑥∈𝛯𝑢𝑛𝑖
𝑎𝑝𝑥;  𝑏𝑉(𝑎𝑝) = 𝑚𝑎𝑥𝑥∈𝛯𝑢𝑛𝑖

𝑎𝑝𝑥. (11) 

Thus, LP problems in the selected version of applied interval data analysis have n 

variables, and the number of constraints is equal to twice the number of observations 

of the analyzed portion of the data base. 

Let us move on to the computer implementation of computational algorithms. In 
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general, the number m and the size of the data portions must satisfy the inequality 

2(n + N/m) < D, where D is the maximum number of constraints in the LP problem 

allowed by the optimization software package. 

In our case (D = 100), n = 20 was chosen for the main variant of the experimental 

base, and the admissible 50 observations were cut into 5 portions. Note that the 

minimum number of portions in our case can be three, for example, with the number 

of observations 17, 17, 16, respectively. In computational experiments, other variants 

of the size of the observation tables were also investigated, including much larger 

(50x20), for linear processes of different parameters. 

In all variants, the observation table was filled in the selected intervals for the input 

variables and for measurement errors with uniform pseudo-random numbers by the 

Excel function RAND(). The values of the output variable for the given parameters of 

the linear dependence were modeled with an interval error. For the basic version of 

the database, the intervals for the input variables were equal to [5, 100], for theirerrors 

– [-1, 1], for the observation error of the output variable – [-2, 2]. The value of the 

dependency coefficients for all variables was 10. 

Computational experiments were carried out in one Excel workbook and the 

program scheme for the two computational algorithms was chosen the same: some of 

the sheets were occupied by the database generators, then one of the LP problem (10), 

the Center problem (step 1) and 5 computer tasks (step 2). The differences between 

the algorithms for sequential and parallel analysis of data pieces consisted in different 

transmission schemes for the index set I0 formed and adjusted by the Center for 

observations, which determine the matrix of the basic variables of the LP problem. 

For the main version of the database with its repeated updates, it is shown that the 

proposed computational technologies make it possible to obtain an optimal solution to 

the LP problem when analyzing big data. All other things being equal, parallel 

analysis is more preferable in terms of the number of LP subproblems for obtaining 

an exact solution. 

The number of LP problems solved at Step 2 of the algorithms essentially depends 

on the initial set I0 of the entire LP problem. The corresponding matrix of constraints, 

in addition to the absence of linearly dependent rows, must be well conditioned. In 

this case, it is shown that, on average, for m solved LP problems at step 2, it is 

possible to obtain the optimal or close to it value of the desired estimate. According to 

the experience of solving large LP problems [8, 9], in practice, one should expect a 

fast approximation (in 1, 2 runs) in the vicinity of the optimal estimate and slow 

motion to its exact value. 

In computer modeling, the features of the application of linear programming 

methods to identify variables, the influence of which on the output variable of the 

process is absent or not significant, are considered. To solve this problem of data 

analysis, the hypothesis of the belonging of the zero value of the investigated 

coefficient to its interval estimation was tested by solving the LP problems (5). 

In this case, you can use the solution of nonlinear programming problems (6) for 

the selected set of variables. The composition of variables for checking their 

significance is obtained by the method of the center of uncertainty by solving problem 

(8), a version of which in our case is reduced to two criterial nonlinear programming 
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problem. 

It should be noted that the efficiency of solving the problem of big data analysis in 

practice could be increased by modifying the parallelization schemes in the proposed 

algorithms, using additional methods of organizing the computational process and 

using high-performance computing systems. 

3.2 Analysis of Road Accidents in England 

The study is conducted using large baseline data of road traffic accidents (RTA) 

throughout England for 2005-2017. Sources from the Internet and a description of the 

accident data are presented in [16, 17]. The general database, including its main 

variables and records of the factors of each accident, obtained from the Internet, takes 

hundreds of megabytes and requires universal software for processing.  

In our case, a sample of the records of road accidents with fatal outcomes was 

made. The total number of such accidents registered in the database is 26370, 

including 17010 on rural roads. For the analysis, data on accidents on rural roads in 

the county of Cornwall in the south-west of England were selected. This data was 

converted and processed in the MS Excel environment in three stages. 

At the first stage of the transformation of records, some of the variables were 

excluded during the formation of the working database, including a number of fields 

were excluded. These are, for example, road class for 2-road accident participant, 

highway number for 2-road accident participant, highway number for 1 road accident 

participant, traffic control method, geographic Cartesian coordinates, speed limit 

level, weather conditions, astronomical time of an accident, etc. 

These exceptions are caused, firstly, by the fact that for some road accidents there 

are no complete data sets for the excluded items, and, secondly, we considered them 

insignificant in our estimates. In particular, weather conditions are related to the 

condition of the road surface (dry, wet), and the time of theaccident is associated with 

the level of illumination (darkness, daylight). 

The next stage of data analysis is converting the table into numerical formats in 

accordance with the requirements of applying formula (2). It is necessary to highlight 

the time period in the description of the causes of the accident. This time period is the 

number of the month, starting from January 2005 to December 2017. Summing up the 

number of accidents for each month, we obtain for analysis a data table for 13 years, 

the number of rows of which is 156. Thus, the resulting database for processing in MS 

Excel is large and exceeds the capabilities of the "Search for a solution" tool. 

The last transformation of the data table is associated with the decision to take into 

account the time factor by encoding from 1 to 156 and take into account the quarter 

number of each record as an input variable. In the considered case, a mathematical 

model similar to (2) takes the following form: 

 𝑦 = 𝑎0 + 𝑎1𝑡1 + 𝐾1𝑑1(𝑡) + ⋯ + 𝐾4𝑑4(𝑡) + 𝑃𝑟𝑑𝑃𝑟(𝑡) + 𝐶𝑣𝑑𝐶𝑣(𝑡) + 𝐶𝑝𝑑𝐶𝑝(𝑡). (12) 

In the mathematical model (12), the following variables are identified: a0, a1–free 

term of the regression equation and the coefficient of the time trend of the number of 

accidents in the selected area; t – month number; Kidi(t) – contribution to the number 
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of road accidents from the conditions of quarter i, i = 1, … ,4; PrdPr(t), CvdCv(t),
CpdCp(t)– contributions, respectively, of holidays, illumination and road conditions 

to the level of road accidents in the month t, t = 1, … , 156. 

Data analysis was carried out using the algorithms proposed in this work. The 

obtained estimates of the coefficients of the model (12) make it possible to solve 

applied problems of forecasting a selected class of accidents in the study area and 

assessing the influence of individual factors on their occurrence. 

Below is a Table of the causal analysis of road accidents in the designated area by 

quarters 2017. 

The base number of road accidents in each quarter was determined taking into 

account the quantitative variables in the model (12) and the base (zero) values of the 

qualitative risk factors. The contributions of qualitative factors are highlighted in 

separate lines: road accidents on holidays and at night. 

Table 1. The results of the quarterly analysis of the factors of road traffic accidents for 2017. 

Characteristics of road accident conditions in 2017 Pr Cv Cр 

The fact 

of the 

accident 

Accident 

assessment 

Base number of road accident per quarter 1 - Daylight 3 

 

2.27 

Increase in road accidents on rest days 1 Daylight Dry 

 

0.45 

Increase in road accidents with Darkness or lights lit - 1 Dry 

 

0.27 

Total for quarter 1 in 2017 

   

4 2.99 

Base number of road accident per quarter 2 - Daylight 5 

 

3.57 

Increase in road accidents on rest days 3 Daylight Dry 

 

1.36 

Increase in road accidents with Darkness or lights lit - 2 Dry 

 

0.53 

Total for quarter 2 in 2017 

   

6 5.46 

Base number of road accident per quarter 3 - Daylight 5 

 

3.79 

Increase in road accidents on rest days 3 Daylight Dry 

 

1.36 

Increase in road accidents with Darkness or lights lit - 5 Dry 

 

1.33 

Total for quarter 3 in 2017 

   

6 6.48 

Base number of road accident per quarter 4 - Daylight 2 

 

3.40 

Increase in road accidents on rest days 3 Daylight Dry 

 

1.36 

Increase in road accidents with Darkness or lights lit - 1 Dry 

 

0.27 

Total for quarter 4 in 2017       5 5.03 

The quality of analytical research can be assessed by the following indicator. The 

actual number of road accidents in 2017 in the allocated area is 21. An explanation of 

the causes of road accidents in this area is given – 19.96, i.e. the analysis error was 

4.94%. 
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4 Discussion 

The main result of this article is to substantiate the possibility of using applied 

interval analysis for big data. The main idea of the work is based on the fact that the 

mathematical problems of this analysis (estimating the parameters of the required 

dependence, identifying and eliminating outliers of observation results, interval 

forecasting of the resulting variable's values, etc.) can be solved by optimization 

methods. This property is distinguished by the interval approach and the regression 

analysis based on the method of least squares. In particular, simple schemes for 

separating data blocks and using average results (as in [2]) do not work in interval 

analysis. However, optimization methods of large dimensions become effective for 

interval analysis of big data [14, 15]. 

In section 2 of the article, using the example of linear processes, applied problems 

of interval analysis are systematized and the universality of the application of 

optimization methods for their solution is shown. This conclusion is also valid in the 

general case of modeling nonlinear processes. In the methodological section, two 

implementations of the method of relaxation of constraints are proposed [15] in the 

general case of measurement errors for all variables, which are directly generalized 

for the case of analysis of nonlinear processes. These studies have elements of 

scientific novelty. 

Section 3 presents new results of the study of interval analysis of big data of model 

and real processes. On specific examples of big data analysis in the Excel 

environment, the organization of distributed computing is considered, an estimate of 

the final convergence rate is given, and empirical estimates of the error of linear 

calculations are obtained. It is shown that in practice the number of rows of the 

observation matrix is not limited, and the number of columns (the number of factors) 

is determined by the capabilities of the computer program for solving optimization 

problems. The ways of reducing the factor space of the modeled process are 

investigated. On the example of the analysis of big data of road traffic accidents 

(RTA) in England, all stages of interval data analysis are considered, including the 

tasks of structuring the information flow of data in order to obtain a digital table of 

input and output variables of the modeled process. Thus, the results of the work can 

be used for interval analysis of big data of similar applications. 

5 Conclusions 

The article proposes using an interval approach to solve the problem of big data 

analysis, in which LP methods are used in the study of dependences linear in 

parameters. Two methods of sequential reading of constraints and parallel computer 

computations are proposed for solving LP problems of large dimension. The 

optimality of the calculations is substantiated using the well-known technique of 

relaxation of constraints when solving optimization problems of large dimensions.  

Computational experiments have shown the possibility of using applied interval 

analysis in practice. The research was carried out for model processes and for real 
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data. 
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